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No other bone in the human body differs, on average, as 
strongly between males and females as the pelvis. The pelvis 
is the only part of the human body for which females have 

larger average dimensions than males1–5. Compared with males, 
females have absolutely larger birth-relevant dimensions of the pel-
vic canal and a wider subpubic angle as well as a wider sciatic notch. 
This makes the human pelvis the most reliable anatomical structure 
for the sex determination of skeletal remains6–9. Following earlier 
work10, we use ‘female’ and ‘male’ here to refer to humans of all gen-
ders with an anatomy that is commonly assigned to be female and 
male, respectively. The terms ‘sex differences’ and ‘sexual dimor-
phism’ are used synonymously.

Pelvic sex differences in humans and non-human primates have 
long been interpreted as evidence of selection acting on females 
for an obstetrically sufficient pelvis (‘obstetric selection’)1,2,4,11–15. 
However, the obstetric significance of sex differences in the pel-
vis is contentious among researchers4,5,10,16–18. Primates with high 
cephalopelvic ratios (large foetal heads relative to maternal pelvic 
dimensions) tend to exhibit strong pelvic sex differences12,19,20. Yet, 
the presence of mild differences in obstetrically less constrained 
species, such as great apes, calls into question the exclusive role of 
obstetric selection in producing these differences. Even in certain 
obstetrically unconstrained species, such as the Virginia opossum, 
a marsupial whose neonates comprise a mere 0.01% of maternal 
mass21, pelvic sex differences are present independent of differences 
in body size. It has been suggested that pelvic sex differences can 
also, at least partially, arise from natural selection on other anatomi-
cal or physiological traits because steroid hormones do not only 
trigger dimorphic growth and remodelling in the pelvis but are 
also involved in numerous other developmental and physiological 
processes4,10,18.

The evolution of bipedal locomotion coincided with mas-
sive changes in the human skeleton, including the pelvis, in both 
sexes22–24. But because of the scarcity of well-preserved pelvic fos-
sil material, it remains unclear if the modern pelvic sex differences 
appeared with bipedalism in the Miocene to Pliocene or later with 

encephalization in the Pleistocene, or whether it preceded both of 
these processes. Inferences from the fossil record are also hampered 
by the unknown sex of the specimens. For example, at some point it 
was even argued that the fossil skeleton ‘Lucy’ (A.L. 288-1), which 
comprises one of the best-preserved female Australopithecus pelves, 
might be male25–27.

Body proportions and stature correlate with pelvic form in 
humans1,28–31, and some studies have suggested that the pelvic sex 
differences in the great apes are partly a consequence of body-size 
differences between the sexes4,17,18. However, for modern humans it 
has been shown that overall size differences contribute minimally to 
sex differences in pelvis shape2.

In this Article, we address the evolutionary origin of human pel-
vic sex differences by a comprehensive geometric morphometric 
comparison of pelvic variation in modern humans and chimpanzees 
(Pan troglodytes), one of our closest living relatives (Fig. 1). Birth is 
an easier process in chimpanzees than in humans as the neonatal 
head comprises only approximately 70% of the smallest maternal 
pelvic dimension12,14 and labour is typically shorter, although chim-
panzee foetuses also appear to rotate during parturition, similarly 
but not identical to humans32,33. Nonetheless, chimpanzees are usu-
ally considered a species with little, if any, obstetrical constraint 
resulting from the bony pelvis. Most of the studies that investigated 
pelvic sex differences in chimpanzees have documented subtle dif-
ferences in pelvic dimensions4,18,20,34.

Results
We conducted a principal component analysis (PCA) of the 
Procrustes-aligned shape coordinates of 34 chimpanzee and 99 
human individuals (Methods) to explore individual variation in pel-
vis shape. Humans and chimpanzees separated clearly along princi-
pal component (PC) 1 (79% of total shape variance), whereas the sex 
differences in both humans and chimpanzees were captured by PCs 
2 and 3 (Fig. 2). Hence, the species differences in pelvis shape were 
clearly different (geometrically orthogonal) from the sex differences 
in the two species. In the plot of PC 2 versus PC 3, the four sex 
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means were almost collinear, indicating that the pattern of sex dif-
ferences is very similar in humans and chimpanzees (almost parallel 
mean difference vectors; Fig. 2b). However, the overall magnitude 
of sex differences in chimpanzees, as measured by the Procrustes 
distance between male and female mean shapes, was only 52% of 
that in humans.

Because humans have a much larger body size than chimpanzees 
and males are larger than females in both species, we investigated 
allometry, the association of size and shape, in each species (pooled 
within sex). We found that the pattern of pelvic allometry was simi-
lar in both species but clearly distinct from the directions of sexual 
dimorphism and the species differences (Fig. 2). Similar results were 

obtained when using non-pelvic body size proxies instead of pelvic 
centroid size to estimate allometry (Extended Data Figs. 1 and 2).

The similar pattern of sex differences in humans and chimpan-
zees is also obvious from the three-dimensional (3D) visualizations 
of male and female pelvis shapes (Fig. 3). In both species, the rela-
tive transverse diameter of the pelvic inlet and the subpubic angle 
were larger in females compared with males. Females had a sacrum 
that was, on average, relatively broader but shorter than in males. 
Males had relatively larger and more flared iliac blades than females.

For a better comparison of the pattern of sex differences between 
humans and chimpanzees, independent of the strong species dif-
ferences in pelvis shape, we added the chimpanzee vector of sex 

Fig. 1 | landmarks and semilandmarks. The 109 3D landmarks (red) and semilandmarks (magenta) used in this study, shown on the mean female human 
pelvis shape (top row) and the mean female chimpanzee pelvis shape (bottom row) of this sample in anterior (leftmost), superior (centre) and lateral 
(rightmost) views. The surface models are semi-transparent so that all landmarks are visible.
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Fig. 2 | Joint Pca of pelvis shape for humans and chimpanzees. a, PC 1 versus PC 2. b, PC 2 versus PC 3. Each small point corresponds to an individual 
(humans: males in blue, females in red; chimpanzees: males in light blue, females in light red). The larger points in the same colours correspond to the sex 
means of each species. The arrows are the species-specific allometry vectors (coefficient vectors from the pooled within-sex regression of pelvis shape on 
centroid size, projected into the PC spaces), indicating that the average shape pattern is associated with an increase in pelvis size. Note that they are not 
sex-specific but are superimposed twice on the sex means of each species (Methods and Extended Data Fig. 1).
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differences to the human sex means, after scaling the chimpanzee 
vector to the same length as the human sex difference vector (in 
units of Procrustes distance). In other words, we added the chim-
panzee dimorphism, scaled to the same magnitude as the human 
dimorphism, to the human female mean shape and we subtracted 
this scaled chimpanzee dimorphism from the human male mean 
shape. This resulted in almost perfect reconstructions of the human 
sex differences in pelvis shape (Fig. 4), showing that the pattern of 
sex differences is indeed almost the same in the two species.

To assess sex differences in the birth canal more specifically, we 
conducted a separate analysis of pelvic inlet shape. The most rel-
evant dimensions of the birth canal are determined by the pelvic 
inlet, which is the superior or coronal part of the pelvic canal, as 
well as the pelvic midplane and outlet. For the inlet, which is most 
readily comparable between humans and chimpanzees, the pattern 
of sex differences was once again very similar in the two species. 
On average, the transverse diameter of the inlet was relatively wider 
in females for both humans and chimpanzees, yielding an over-
all rounder birth canal in females compared with males (Fig. 5). 
Inlet size, calculated as the area of the polygon defined by the inlet  

landmarks, was larger in females than in males in both species (on 
average, 11% larger in human females compared with males and 
10% larger in chimpanzees; Extended Data Fig. 3).

Discussion
The human pelvis must accommodate a large foetus during birth 
and allow for upright locomotion, two traits that are considered 
central to hominin evolution. From this human-centred perspec-
tive, our finding that chimpanzees basically have the same pattern 
of pelvic sex differences as humans appears surprising.

Human pelvic morphology is thought to be the result of an evo-
lutionary trade-off: obstetric sufficiency imposes selection for a spa-
cious birth canal, whereas the biomechanics of bipedal locomotion 
and pelvic floor stability during erect posture impose selection for 
a narrow pelvis1,13,23,35–38. Additionally, it has been suggested that an 
expanded female pelvic canal may also be developmentally induced 
by the spatial requirements of the uterus, vagina and gonads10. 
Clearly, obstetric selection for a more spacious birth canal is consid-
erably weaker in chimpanzees than in humans, but also the antago-
nistic selection for a less expansive birth canal is likely to be much 
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Fig. 3 | Sex differences in pelvis shape for humans (top row) and chimpanzees (bottom row). Visualizations were created by warping, separately for each 
species, one specimen’s surface mesh to the female and male mean shapes using thin-plate spline interpolation. Average female and male shapes are 
shown together with two-fold extrapolations of the sex differences (‘exaggerated female’ and ‘exaggerated male’; Methods).
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Fig. 4 | a comparison of pelvic sex differences in humans and chimpanzees independent of the species differences. The top row depicts the original sex 
differences in humans (as in Fig. 3). The bottom row shows the pattern of sex differences (mean difference vector) in chimpanzees added to the human 
sex means after scaling it to the same magnitude (that is, to the same length) as the human vector. These visualizations are virtually identical between 
humans and chimpanzees, reflecting the very similar pattern of sexual differences in the two species, regardless of the differences in magnitude.
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weaker in chimpanzees as they are not bipedal. The optimal ‘com-
promise morphology’ of the chimpanzee pelvis may therefore still 
comprise a certain degree of sexual dimorphism, despite chimpan-
zee neonates being relatively small. This may explain the magnitude 
of pelvic dimorphism in chimpanzees4,18,34 and other great apes4,8, as 
documented by earlier studies.

It is less obvious why the pattern of pelvic sex differences in 
chimpanzees so closely resembles that in humans, despite the dif-
ference in the magnitude of dimorphism and all the differences 
in parturition and biomechanics. The striking similarity in pelvic 
sex differences suggests that they did not evolve de novo in mod-
ern humans but were already present in the common ancestor of 
humans and chimpanzees, and thus also in the extinct Homo and 
Australopithecus species and putative hominins (for example, 
Sahelanthropus), albeit at different magnitudes.

It is likely, however, that the pattern of sex differences in the pel-
vis is much older and of early mammalian or even amniote origin. 
Difficult labour owing to large foetuses is not unique to humans 
but can be found in several other primates (for example, gibbons, 
macaques and squirrel monkeys). Bats, seals, several rodents and 
even most ungulates all have relatively larger neonates than humans11. 
Species with large neonates also tend to exhibit more pronounced 
sex differences11,18,20,39. Reptiles and birds lay eggs, but may nonethe-
less face similar ‘obstetric’ challenges when egg size is large relative 
to maternal body size, as in the kiwi bird40 and small-bodied tur-
tles41,42. Indeed, sex differences in the pelvis have been documented 
for all major placental clades (Afrotheria43, Euarchontoglires44,45, 
Eulipotyphla11, Chiroptera11,46,47, Cetartiodactyla48–50, Carnivora51,52 
and Xenarthra45), and the pattern of pelvic sex differences appears 
to be similar between these groups (and similar to the human pat-
tern) with differences concentrated predominantly in the pubic 
region. Similar subtle pelvic sex differences exist in some reptiles53,54 
and birds55. This leads us to hypothesize that a sexually dimorphic 
pelvis existed already in early mammals or potentially even in amni-
otes and that it constitutes the ancestral condition for mammals. 
We propose that this common ancestor had already evolved sexual 
dimorphism in the pelvis to facilitate giving birth to large offspring 
or, alternatively, for laying large eggs relative to adult body size.

Even some mammals with tiny neonates exhibit subtle sex differ-
ences in the pelvis. Marsupial bony pelves provide ample space for 
their small foetuses and obstetric selection clearly cannot explain 

the presence of pelvic sex differences. Yet, some of their sexually 
dimorphic features are similar to the human pattern21. We pro-
pose that pelvic sex differences in mammal species where birth is 
completely unconstrained by the bony pelvis are a ‘vestigial pat-
tern:’ developmental remnants that were obstetrically adaptive in 
early mammalian or amniote ancestors. Because of the underlying 
hormonal induction, it might be difficult to evolutionarily remove 
pelvic sex differences completely, even when they are no longer 
necessary for parturition, as in marsupials. Subtle sex differences 
might not carry a fitness disadvantage and therefore simply persist 
as vestigial traits.

Developmentally, the pattern of pelvic sex differences is largely 
determined by the spatial distribution of oestrogen, androgen 
and relaxin hormone receptors and by hormonally induced bone 
remodelling56,57. In humans, for instance, these hormones have been 
shown to orchestrate pelvic bone remodelling during puberty, but 
sex differences in the pelvic receptors for these hormones have 
already developed in the foetus58,59. The magnitude of pelvic dimor-
phism may also be influenced by the wide pleiotropic effects of 
oestrogen hormones on other tissues, including pelvic soft tissue. 
Indeed, it has been reported that different trunk elements show a 
similar pattern of morphological integration in humans and chim-
panzees, albeit at different magnitudes30,60.

As most aspects of the endocrine system are highly conserved 
among vertebrates, we propose that the genetic–developmental 
machinery underlying pelvic sex differences has also stayed rela-
tively stable during primate and maybe even amniote evolution. 
However, we suggest that the developmental ‘knob’ that regulates 
this machinery, namely the amount and duration of hormone secre-
tion as well as the overall reactivity of the corresponding receptors 
in the pelvis, is much more evolvable and can adapt rapidly. This 
discrepancy in evolvability may account for the conserved pat-
tern of pelvic sex differences among primates and mammals and 
the highly variable magnitude. Hence, when the size of the neo-
natal brain increased substantially in the human lineage during 
the Pleistocene61,62, the genetic and developmental mechanisms to 
evolve a more spacious female pelvis were already in place, they did 
not need to evolve anew. This evolutionary co-option has led to the 
modern human pelvic dimorphism, which is outstanding in magni-
tude among most primates but probably similar in pattern to most 
other mammals.

This idea closely resembles the concept of ‘facilitated variation’63, 
which is a central concept in evolutionary developmental biol-
ogy and the extended evolutionary synthesis64,65. It proposes that 
‘weak regulatory linkage’ of conserved genetic and developmental 
‘core components’ has greatly enhanced the evolvability of complex 
organisms. A classic example is sex determination and sex-specific 
development. Once sex is determined, the genetics and physiology 
of sex-specific development are strongly conserved in vertebrates 
(conserved core components). But the way in which sex is deter-
mined (that is, the switch that turns on male or female develop-
ment) varies considerably across lineages66–69. We propose that 
the genetic and developmental mechanisms responsible for pelvic 
sex differences are themselves conserved core components with a 
highly evolvable regulatory control.

Support for the facilitated variation hypothesis of pelvic sex 
differences comes from the comparison of human populations. A 
reanalysis of the data from DelPrete70 showed that all populations 
have a very similar pattern of pelvic sex differences despite ample 
variation in the magnitude of dimorphism, as predicted by our 
hypothesis (Extended Data Fig. 4). So far, no broad quantitative 
comparison of pelvic sex differences across primates, mammals and 
amniotes has been conducted. Our hypothesis provides the testable 
prediction that the pattern, but not the magnitude, of pelvic sex dif-
ferences is largely conserved across mammals and other amniotes, 
despite very different obstetric and biomechanical requirements.
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Fig. 5 | Sex differences in the pelvic inlet in humans and chimpanzees. The 
pelvic inlet is the superior part of the birth canal (Fig. 1). Sex differences in 
the inlet (humans: top row, chimpanzees: bottom row) are shown together 
with three-fold extrapolations of the sex differences (‘exaggerated female’ 
and ‘exaggerated male’). The symphysis pubis lies at the bottom of each 
curve and the sacrum at the top. In humans, and especially in males, the 
sacral promontory protrudes into the pelvic canal, which is not the case in 
chimpanzees.
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Methods
Our study sample comprised 34 adult chimpanzee pelves (20 female, 14 male) and 
99 adult human pelves (53 female, 46 male). On each pelvis, 44 anatomical 3D 
landmarks and 65 curve semilandmarks were collected. For the chimpanzees, we 
measured these points manually on 3D surface models of pelves in the software 
Amira-Avizo (Thermo Fisher Scientific). The chimpanzee sample included 10 
specimens segmented from whole-body computerized-tomography (CT) scans 
from the Primate Research Institute of the University of Kyoto, 20 CT-scanned 
disarticulated pelves available as individual bones from the Center for Academic 
Research and Training in Anthropogeny (which we recomposed digitally using the 
software Geomagic), and four surface-scanned pelves available as individual bones 
from the Natural History Museum in Vienna, which we also recomposed digitally 
using Geomagic (Supplementary Table 1). One chimpanzee specimen had  
missing landmarks, which were imputed by thin-plate spline deformation of the 
sample average71.

For the human sample, a set of pelvic landmarks homologous to those in the 
chimpanzees was selected from a larger, existing dataset collected from skeletons 
of white North Americans housed at the Hamann-Todd collection1,2,72,73. These 
data were collected by physically articulating the sacrum and left coxal bone before 
measuring the 3D landmarks with a Hewlett-Packard digitizer72. As landmarks 
were only measured on the left hemipelvis they were mirrored across the midplane, 
which was estimated as a least-squares fitted plane to the unpaired landmarks. In 
the original human sample, 3.6% of all landmarks were missing, which were also 
imputed by thin-plate spline deformation of the sample average71.

The landmark data of all 133 pelves were subjected to generalized Procrustes 
analysis, standardizing for variation in overall position, scale and orientation74–76. 
The positions of the semilandmarks along their curves were estimated by the 
sliding-landmark algorithm, which minimizes the bending energy, a measure of 
local shape differences, between the individuals and the sample mean shape77,78.

Sexual dimorphism in pelvis shape was visualized by warping a 3D surface 
model to the female and male mean shapes, separately for humans and chimpanzees, 
using thin-plate spline interpolation. For the chimpanzees, a surface model of one 
specimen in our sample was used. For visualizing the human landmark data, we 
used another surface model of a human pelvis that was not part of our sample (www.
turbosquid.com human anatomy series, product ID 710664, Oormi Creations), on 
which we measured the same 3D landmarks using the software Amira-Avizo.

To extrapolate the pattern of sexual dimorphism for effective visualization, 
we produced exaggerated female and exaggerated male pelvis shapes by adding or 
subtracting one additional sexual-dimorphism vector to the sex means, separately 
for each species, leading to a two-fold extrapolation of the actual magnitude of 
dimorphism. To compare individual variation and sexual dimorphism in pelvis 
shape between humans and chimpanzees, we performed a joint PCA of the pelvic 
shape coordinates of the two species.

Allometry, the association of size and shape, was estimated by an ordinary 
least-squares regression of the shape coordinates on the landmarks’ centroid size, 
separately for each species but pooled within males and females76,79. Additionally, 
we regressed the pelvic shape coordinates on body size (stature in humans and 
femur head diameter in chimpanzees). The vectors of regression coefficients were 
orthogonally projected onto the PC planes (PC 1–2 and PC 2–3) and superimposed 
on the two sex means.

To assess sex differences in the size and shape of the birth canal more 
specifically, we used a sub-sample of 12 landmarks delineating the pelvic inlet, 
from the sacral promontory along the linea terminalis to the pubic symphysis. 
These 3D landmarks were projected onto a least-squares fitted plane and the size 
of the inlet was calculated as the area of the polygon defined by the projected inlet 
landmarks. The sliding-landmarks algorithm77,78 was applied once again to the 
resulting two-dimensional landmarks, which were then subjected to Procrustes 
analysis and PCA. All analyses and all figures were produced using the software 
Wolfram Mathematica 12.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are openly available in an OSF 
repository80, https://osf.io/bd4gw/.

code availability
The code written to analyse the data is openly available in an OSF repository80, 
https://osf.io/bd4gw/.
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Extended Data Fig. 1 | Principal component analysis (Pca) of pelvis shape, jointly for humans and chimpanzees. The black arrows represent the 
allometry vectors, which were estimated here using a non-pelvic size measure for each species (femoral head diameter in chimpanzees and body height in 
humans, compare Extended Data Fig. 2) in contrast to Fig. 2, where they were estimated based on pelvic centroid size. For these non-pelvic size variables, 
z-scores were computed independently for each species. The allometry vectors were then estimated by regressing the shape coordinates on the z-scores 
for each species and projected into the PC spaces. As in Fig. 2, the allometry vectors are species-specific but not sex-specific. The vectors are shown twice, 
superimposed on the sex means for each species. The direction of allometry is distinct from the direction of sex differences in both species. The individual 
data shown are the same as in Fig. 2. Each small point corresponds to an individual (humans: males=blue, females=red; chimpanzees: males=light blue, 
females=light red). The larger points in the same colors correspond to the sex means for each species.
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Extended Data Fig. 2 | Pelvic centroid size vs. femoral head diameter in chimpanzees and body height in humans, respectively. Correlations for these 
pairs of size measures were 0.62 in chimpanzees and 0.70 in humans. Femoral head diameter was available for 31 out of 34 chimpanzees and stature was 
available for all 99 human individuals.
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Extended Data Fig. 3 | inlet area in mm2 in humans and chimpanzees for females (red) and males (blue). Inlet area was calculated as the area of the 
polygon defined by the 2D inlet landmarks. Humans: female mean=11540 (sd=1248), male mean=10376 (sd=1047); Chimpanzees: female mean=9517 
(sd=1107), male mean=8661 (sd=1263).
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Extended Data Fig. 4 | Reanalysis of data from DelPrete (2019). These data comprise means for females and males of 26 pelvic variables (linear 
distances, curved distances, and circumferences) from 6 populations (skeletal collections): White individuals from Hamann-Todd collection (HTW,  
60 males, 59 females); Black individuals from Hamann-Todd (HTB, 60 m., 60 f.); Whites from Terry collection (TEW, 52 m., 52 f.), Blacks from Terry 
collection (TEB, 52 m., 52 f.); Coimbra collection (CO, 84 m., 71 f.); Spitalfields collection (SP, 31 m., 35 f.). We conducted a principal component analysis 
of these data. Shown are the sex means of males (blue) and females (red) for each population within the first three principal components (accounting 
for 94% of the total variance). The sex difference vectors (lines connecting the sex means) of the six populations are close to parallel in the first three 
principal components (panels A and B), illustrating the similar pattern of sex differences in the pelvis between human populations, despite some variation 
in magnitude (panel C). The magnitude was calculated as the Euclidean length of the sex differences vector.
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